Week 5

5.1 Cosets and The Theorem of Lagrange

Let G be a group, H a subgroup of G . We are interested in knowing how large H is relative to G.

We define a relation \sim_L on G as follows:

$$
a \sim_L b
$$
 if and only if $b = ah$ for some $h \in H$,

or equivalently:

 $a \sim_L b$ if and only if $a^{-1}b \in H$.

Exercise: \sim_L is an equivalence relation.

We may therefore partition G into a disjoint union of equivalence classes with respect to \sim_L . We call these equivalence classes the **left cosets** of H in G; each left coset of H has the form

$$
aH = \{ah : h \in H\}.
$$

We could likewise define a relation \sim_R on G by

$$
a \sim_R b
$$
 if and only if $b = ha$ for some $h \in H$,

or equivalently:

$$
a \sim_R b
$$
 if and only if $ba^{-1} \in H$.

 $~\sim$ R is also an equivalence relation, whose equivalence classes, which are subsets of the form

$$
Hb = \{ hb : h \in H \}, \quad b \in G,
$$

are called the **right cosets** of H in G .

Definition. The number of left cosets of a subgroup H of G is called the **index** of H in G . It is denoted by:

 $[G:H]$

Theorem 5.1.1 (Lagrange). *Let* G *be a finite group. Let* H *be subgroup of* G*, then* |H| divides |G|. More precisely, $|G| = [G : H] \cdot |H|$.

Proof. We already know that the left cosets of H partition G. That is:

$$
G = a_1 H \sqcup a_2 H \sqcup \ldots \sqcup a_{[G:H]}H,
$$

where $a_iH \cap a_jH = \emptyset$ if $i \neq j$. Hence, $|G| = \sum_{i=1}^{[G:H]} |a_iH|$. Note that one of the left cosets, say a_iH is equal to $H = eH$. The theorem follows if we show that left cosets, say a_1H , is equal to $H = eH$. The theorem follows if we show that the size of each left coset of H is equal to |H|.

For each left coset S of H, pick an element $a \in S$, and define a map ψ : $H \longrightarrow S$ as follows:

$$
\psi(h)=ah.
$$

We want to show that ψ is bijective.

For any $s \in S$, by definition of a left coset (as an equivalence class) we have $s = ah$ for some $h \in H$. Hence, ψ is surjective. If $\psi(h') = ah' = ah = \psi(h)$ for some $h' \circ H$ then $h' = a^{-1}ah' = a^{-1}ah = h$. Hence, ψ is one-to-one. some $h', h \in H$, then $h' = a^{-1}ah' = a^{-1}ah = h$. Hence, ψ is one-to-one.
So we have a bijection between two finite sets. Hence, $|S| - |H|$

So we have a bijection between two finite sets. Hence, $|S| = |H|$.

 \Box

Remark. As a consequence of the Theorem of Lagrange, we see that the numbers of left cosets and right cosets, if finite, are equal to each other; more generally, the set of left cosets has the same cardinality as the set of right cosets.

Corollary 5.1.2. *Let* G *be a finite group. The order of every element of* G *divides the order of* G*.*

Proof. Since G is finite, any element of $q \in G$ has finite order |g|. Since the order of the subgroup:

$$
H = \langle g \rangle = \{e, g, g^2, \dots, g^{|g|-1}\}
$$

is equal to |g|, it follows from Lagrange's Theorem that $|g| = |H|$ divides $|G|$. \Box

Corollary 5.1.3. *If the order of a group* G *is prime, then* G *is a cyclic group.*

Proof. Let G be a group such that $p = |G|$ is a prime number. Since $p \geq 2$, there exists $a \in G \setminus \{e\}$. The above corollary them says that $|a| | p$. But $|a| \neq 1$, so we must have $|a| = p$. This means that $G = \langle a \rangle$. must have $|a| = p$. This means that $G = \langle a \rangle$.

Corollary 5.1.4. *If a group G is finite, then for all* $q \in G$ *we have:*

$$
g^{|G|} = e.
$$

Proof. The previous corollary already says that $|g| \, |G|$, i.e. $|G| = k \cdot |g|$. So $g^{|G|} = (g^{|g|})^k = e$. $g^{|G|} = (g^{|g|})^k = e.$

5.2 Examples of cosets

Example 5.2.1. Let $G = (\mathbb{Z}, +)$. Let:

$$
H = 3\mathbb{Z} = {\ldots, -9, -6, -3, 0, 3, 6, 9, \ldots}
$$

The set H is a subgroup of G . The left cosets of H in G are as follows:

 $3\mathbb{Z}, 1+3\mathbb{Z}, 2+3\mathbb{Z},$

where $i + 3\mathbb{Z} := \{i + 3k : k \in \mathbb{Z}\}.$

In general, for $n \in \mathbb{Z}$, the left cosets of $n\mathbb{Z}$ in \mathbb{Z} are:

$$
i + n\mathbb{Z}, \quad i = 0, 1, 2, \dots, n - 1.
$$

Example 5.2.2. Let $G = GL(n, \mathbb{R})$. Let:

$$
H = GL^+(n, \mathbb{R}) := \{ h \in G : \det h > 0 \}.
$$

(**Exercise:** H is a subgroup of G .)

Let:

$$
s = \begin{pmatrix} -1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \in G
$$

Note that det $s = \det s^{-1} = -1$.

For any $g \in G$, either det $g > 0$ or det $g < 0$. If det $g > 0$, then $g \in H$. If $\det g < 0$, we write:

$$
g = (ss^{-1})g = s(s^{-1}g).
$$

Since det $s^{-1}g = (\det s^{-1})(\det g) > 0$, we have $s^{-1}g \in H$. So, $G = H \sqcup sH$,
and $[G : H] = 2$. Notice that both G and H are infinite groups, but the index of and $[G : H] = 2$. Notice that both G and H are infinite groups, but the index of H in G is finite.

Example 5.2.3. Let $G = GL(n, \mathbb{R})$, $H = SL(n, \mathbb{R})$. For each $x \in \mathbb{R}^{\times}$, let:

$$
s_x = \begin{pmatrix} x & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \in G
$$

Note that $\det s_x = x$.

For each $q \in G$, we have:

$$
g = s_{\det g}(s_{\det g}^{-1}g) \in s_{\det g}H
$$

Moreover, for distinct $x, y \in \mathbb{R}^{\times}$, we have:

$$
\det(s_x^{-1} s_y) = y/x \neq 1.
$$

This implies that $s_x^{-1} s_y \notin H$, hence $s_y H$ and $s_x H$ are disjoint cosets. We have therefore: therefore:

$$
G = \bigsqcup_{x \in \mathbb{R}^\times} s_x H.
$$

The index $[G : H]$ in this case is infinite.

Exercise: For the subgroup $(\mathbb{Z}, +) < (\mathbb{R}, +)$, show that the set of (left) cosets are parametrized by $[0, 1)$, so that we have

$$
\mathbb{R} = \bigsqcup_{t \in [0,1)} (t + \mathbb{Z}).
$$

Exercise: For a vector subspace $W \subset V$, we consider the subgroup $(W, +)$ < $(V, +)$. Then the set of cosets are given by the *affine translates* $v + W$, $v \in V$, of W in V. Let $W' \subset V$ be a subspace complementary to W, meaning that it satisfies the following conditions: satisfies the following conditions:

- dim $W' = \dim V \dim W$, and
- $W \cap W' = \{0\}.$

Show that the set of cosets of W in V are parametrized by W' , so that

$$
V = \bigsqcup_{v \in W'} (v + W).
$$

Example 5.2.4. Consider the dihedral group D_n , and the cyclic subgroup $\langle r \rangle$ generated by the anticlockwise rotation by $2\pi/n$. Since generated by the anticlockwise rotation by $2\pi/n$. Since

$$
D_n = \{id, r, r^2, \dots, r^{n-1}, s, rs, r^2 s, \dots, r^{n-1} s\},\
$$

we directly see that

$$
D_n = \langle r \rangle \sqcup s \langle r \rangle.
$$

Example 5.2.5. Consider the *n*-th symmetric group S_n , and the subgroup $A_n < S$ consisting of all the even permutations. Let $\tau \in S$ be a transposition. Ever- S_n consisting of all the even permutations. Let $\tau \in S_n$ be a transposition. Exercise: the map $\sigma \mapsto \tau \sigma$ gives a bijection between A_n and $B_n := S_n \setminus A_n$, the set of all odd permutations. Hence we have $S_n = A_n \sqcup \tau A_n$.

Example 5.2.6. Recall that $S_3(= D_3)$ is generated by $\rho = (123)$ and $\mu = (12)$. (In fact, $S_3 = \{id, \rho, \rho^2, \mu, \rho\mu, \rho^2\mu\}$.) For the cyclic subgroup $H = \langle \mu \rangle < S_3$, the left cosets are given by H oH o²H so that we have $S_2 = H + \rho H + \rho^2H$ left cosets are given by $H, \rho H, \rho^2 H$ so that we have $S_3 = H \sqcup \rho H \sqcup \rho^2 H$.

5.3 Group Homomorphisms

Definition. Let $G = (G, *)$, $G' = (G', *')$ be groups.
A group homomorphism ϕ from G to G' is a

A **group homomorphism** ϕ from G to G' is a map $\phi : G \longrightarrow G'$ which effec satisfies:

$$
\phi(a * b) = \phi(a) *' \phi(b),
$$

for all $a, b \in G$.

If ϕ is also bijective, then ϕ is called an **isomorphism**. If there exists an isomorphism $\phi : G \longrightarrow G'$ between two groups G and G', then we say G is
isomorphic to G' and denoted by $G \sim G'$ **isomorphic** to G' , and denoted by $G \simeq G'$.

Remark. Note that if a homomorphism ϕ is bijective, then ϕ^{-1} : $G' \longrightarrow G$ is also a homomorphism and consequently ϕ^{-1} is an isomorphism also a homomorphism, and consequently, ϕ^{-1} is an isomorphism.

Isomorphic groups have the same algebraic structure and thus share the same algebraic properties – they only differ by relabeling of their elements. One of the most fundamental questions in group theory is to classify groups up to isomorphisms.

- **Example 5.3.1.** Let V, W be vector spaces over \mathbb{R} (or \mathbb{C}). Then a linear transformation $\phi: V \longrightarrow W$ is in particular a homomorphism between abelian groups $\phi: (V, +) \longrightarrow (W, +)$.
	- The determinant det : $GL(n, \mathbb{R}) \longrightarrow \mathbb{R}^{\times}$ is a group homomorphism.
	- The exponential map $\exp : (\mathbb{R}, +) \longrightarrow (\mathbb{R}_{>0}, \cdot)$ is an isomorphism from the additive group of real numbers to the multiplicative group of positive real numbers, whose inverse if given by the logarithm $\log : (\mathbb{R}_{>0}, \cdot) \longrightarrow (\mathbb{R}, +)$.